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Recent experiments have demonstrated that neutral graphene sheets have an insulating ground state in the
presence of an external magnetic field. We report on a �-band tight-binding-model Hartree-Fock calculation
which examines the competition between distinct candidate insulating ground states. We conclude that for
graphene sheets on substrates the ground state is most likely a field-induced spin-density wave and that a
charge-density-wave state is possible for suspended samples. Neither of these density-wave states support
gapless edge excitations.
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I. INTRODUCTION

The magnetic band-energy quantization properties of
graphene sheets lead to quantum-Hall effects1–3 �QHEs� with
�xy =�e2 /h at filling factors �=4�n+1 /2�= . . . ,−6 ,
−2 ,2 ,6 , . . . for any integer value of n. The factor of 4 in this
expression accounts for a graphene sheet’s twofold valley
and spin degeneracies. When Zeeman spin splitting of Lan-
dau levels is included, quantum-Hall effects are expected at
the remaining even integer values of �, including the neutral
graphene �=0 case. The �=0 quantum-Hall effect of neutral
graphene systems is interesting from two different points of
view. First of all, the transport phenomenology of the
quantum-Hall effect3 is different at �=0 because of the pos-
sible absence of edge states. Indeed the initial experimental
indications3 that a �=0 quantum-Hall effect occurs in neutral
graphene did not exhibit either the clear plateau in �xy or the
deep minimum in �xx which are normally characteristic of
the QHE. Second, although a quantum-Hall effect is ex-
pected at �=0 even for noninteracting electrons, the large
energy gaps identified experimentally suggest that interac-
tions play a substantial role in practice. Gaps due entirely to
electron-electron interactions in ordered states are in fact
common4,5 in quantum-Hall systems when two or more Lan-
dau levels are degenerate. Partly for this reason, a number of
different scenarios have been proposed6–16 in which the gap
at �=0 is associated with different types of broken symmetry
within the four quasidegenerate Landau levels near the Fermi
level of a neutral graphene sheet. The prevailing view has
been that the ground state is spin polarized, with partial fill-
ing factors �� equal to 1 and −1 for majority and minority
spins, respectively. This state has an interesting edge-state
structure identical to that of quantum-spin-Hall systems,17

and transport properties in the quantum-Hall regime that are
controlled by the properties of current-carrying spin-resolved
chiral edge states.8,18

The simplest picture of strong-field physics in nearly neu-
tral graphene sheets is obtained by using the Dirac-equation
continuum model and neglecting interaction-induced mixing
between Landau levels with different principal quantum
number n. In this model, electron-electron interactions are
valley and spin dependent. When Zeeman interactions and
disorder are neglected, the broken-symmetry ground state
consists12 of two-filled n=0 Landau levels with arbitrary

spinors in the four-dimensional spin-valley space. This fam-
ily of states is favored by electron-electron interactions be-
cause of Fermi statistics which lowers Coulomb-interaction
energies when the orbital content of electrons in the fermion
sea is polarized. When Zeeman coupling is included, it
uniquely selects from this family the state in which both n
=0 valley orbitals are occupied for majority-spin states and
empty for minority-spin states. The interacting system
ground state is then identical to the noninteracting-system
ground state, although interactions are expected12 to dramati-
cally increase the energy gap for charged excitations.

This argument for the character of the ground state ap-
pears to be compelling but its conclusions are nevertheless
uncertain. First of all, Landau-level mixing effects are nor-
mally stronger than Zeeman interactions, and could play a
role.19 In addition, although corrections7,9–11,20 to the con-
tinuum model for graphene are known to be small at experi-
mental field strengths, they could still be more important
than the Zeeman interactions. Suspicions that the character
of the ground state could be misrepresented by the n=0
continuum-model theory have been heightened recently by
the work of Ong and collaborators, who found a steep in-
crease in the Dirac-point resistance21 with magnetic field and
evidence for a field-induced transition to a strongly insulat-
ing state at a finite magnetic-field strength.22 Somewhat less
dramatic increases in resistance at the Dirac point have also
been reported by other researchers.23–25

In this paper we attempt to shed light on the ground state
of neutral graphene in a magnetic field by performing self-
consistent Hartree-Fock calculations for a �-orbital tight-
binding model. In the continuum model, Hartree-Fock theory
is known12 to yield the correct ground state. By using a
�-orbital tight-binding model we can at the same time con-
veniently account for Landau-level mixing effects and sys-
tematically account for lattice corrections to the Dirac-
equation continuum model. As we will discuss at length
below, it is essential to perform the mean-field-theory calcu-
lations with Coulombic electron-electron interactions and not
the Hubbard-type interactions commonly used10,26 with lat-
tice models. One disadvantage of our approach is that our
calculations are feasible only at magnetic-field strengths
which are stronger than those available experimentally. We
therefore carefully examine the dependence on magnetic-
field strength and extrapolate to weaker fields. We conclude
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that under typical experimental conditions the most-likely
field-induced state of neutral graphene on a SiO2 substrate is
a spin-density-wave state, and that suspended samples might
have a charge-density-wave state. Neither of these orderings
support edge states in the �=0 gap. We also discuss the
magnetic-field dependence of different contributions to the
total energy and estimate a critical value of perpendicular
and tilted magnetic field at which Zeeman splitting will bring
about a phase transition to a solution with net spin polariza-
tion which does support edge states.

Although our calculation captures some realistic features
of graphene sheets that are neglected in continuum models, it
is still not a complete all-electron many-body theory. In par-
ticular, we neglect the carbon � and �� orbitals whose polar-
ization is expected to screen the Coulomb interactions at
short distances. Because of our uncertainty as to the strength
of this screening, our conclusions cannot be definitive. We
nevertheless hope that our calculations, in combination with
experiment, will prove useful in identifying the character of
the field-induced insulating state in neutral graphene.

Our paper is organized as follows. In Sec. II we explain in
detail the model which we study which has two parameters,
a relative dielectric constant �r which accounts for the dielec-
tric environment of the graphene sheet, and the on-site inter-
action U which accounts for short-distance screening effects,
for example, by �-band polarization. Our main results on the
competition between different ordered states are presented in
Sec. III. In Sec. IV we turn to a discussion of the electronic
structure of neutral graphene ribbons, paying particular at-
tention to their edge states which play a key role in most
quantum-Hall transport experiments. Finally in Sec. V we
summarize our main conclusions.

II. INTERACTING-ELECTRON LATTICE MODEL FOR
GRAPHENE SHEETS

A. Noninteracting electron �-band model

We first comment briefly on the �-band tight-binding
model of graphene in the presence of a magnetic field.27–31

Each carbon atom on graphene’s honeycomb lattice has
three near neighbors with �-orbital hopping parameter
t=−2.6 eV. Magnetic-field effects are captured by a phase
factor in the hopping amplitudes: t→ t�e2�i�, where �
= �e /ch��Adl depends on line integral of the vector potential
A along a trajectory linking the two lattice sites. When the
dimensionless magnetic-flux density is ��BShex /�0=1 /q,
where q is an integer and �0=ch /e is a magnetic-flux quan-
tum, it is possible to apply Bloch’s theorem in a unit cell
which is enlarged by a factor of q relative to the honeycomb
lattice unit cell. �The honeycomb lattice unit-cell area Shex
=�3a2 /2 and a=2.46 Å for a graphene sheet.� Lattice-
model Landau levels have a small width which increases
with magnetic-field strength and reflects magnetic break-
down effects neglected in the continuum model.

The ground-state energy-density differences discussed be-
low scale approximately as powers of the magnetic length
�B, defined by 2��B

2B=�0. ��B and q are related by �B

= �Shexq /2��1/2=0.371�qa=0.913�q Å.� In a continuum-
model description the density contributed by a single full

Landau level is 1 /2��B
2 and the energy of the nth Landau

level is given by En= 	2
vF
��n� /�B, where vF=�3at /2
 is

the Fermi velocity of graphene. All energy levels evolve with
magnetic field except for the n=0 level, E0=0.32 When the
nth Landau level is full it contributes En / �2��B

2� to the en-
ergy density. From this we immediately see that in the weak-
field limit important energies tend to scale as �B

−3�B3/2. It is
easy to show, for example, that the magnetic-field depen-
dence of the total band energy of a neutral noninteracting
graphene sheet is given by E��B�=akin /�B

3 , where akin
=2.6 eV Å3. This nonanalytic field dependence is respon-
sible for the divergent weak-field diamagnetic response
���Etot /�B� /B� of graphene discussed some time ago by
McClure.33 We show below that when interactions are in-
cluded, the energy differences between competing field-
induced insulator states also tend to vary as �B

−3.

B. �-band model effective interactions

It is clear from previous analysis of lattice corrections to
continuum models7,9–11,20 and from lattice-model calcula-
tions based on extended Hubbard models10 that conclusions
on the nature of the field-induced insulating ground state are
very dependent on the effective electron-electron interactions
used in a �-band lattice model of graphene. In particular, it
seems clear that the long-range 1 /r Coulomb interaction tail
is essential. We approximate the interaction between � orbit-
als located at sites separated by a distance d by V�d�
=1 / ��r

�ao
2+d2�, where ao=a / �2�3�, the bonding radius of

the carbon atoms, accounts approximately for interaction re-
duction due to �-charge smearing on each lattice site,34 and
�r accounts for screening due to the dielectric environment
of the graphene sheet. �Here energies are in Hartree �e2 /aB�
units and lengths are in units of the Bohr radius aB.� The
on-site repulsive interaction parameter, U, is not well known
and we take it to be a separate parameter. We motivate the
range of values considered for this interaction parameter be-
low. The value chosen for �r can also represent in part
screening by � orbitals neglected in our approximation or be
understood as an ad hoc correction for overestimates of ex-
change interactions in Hartree-Fock theory. Although we
study a range of values for this interaction parameter model
in order to test the robustness of our conclusions, we believe
that a value of �r	4 is normally appropriate for graphene
sheets placed on a dielectric substrate. For practical reasons
we truncate the range of Coulomb interaction in real space at
d=Lmax=6.5a. This type of truncation is especially helpful
when treating systems without periodic boundary conditions
and allows us to avoid problems due to slowly converging
sums in real space that can otherwise be treated through the
Ewald sum method.35 Truncation of the Coulomb interaction
at a reasonably large Lmax must however be applied with
utmost care in order to obtain solutions consistent36,37 with
the limit Lmax→�.

In considering appropriate values for the on-site interac-
tion U we can start from the Coulomb-interaction energy at
the carbon radius length scale which is 	20 eV while this
estimate can be reduced if one considers a charge distribu-
tion corresponding to a p orbital. In fact an estimate from the
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first ionization energy and electron affinity gives U
=9.6 eV.38 It is known that the effective on-site interaction
strength is greatly reduced from this bare value in the solid-
state environment because of screening by polarization of
bound orbitals on nearby carbon atoms. We consider values
of U between 2 and 6 eV, bracketing values deemed appro-
priate by a variety of different researchers.7,39–41 A larger
value of U increases the interaction energy cost of any
charge-density-wave �CDW� state which might occur. The
direct-interaction energy is zero when all carbon sites stay
neutral but can be positive or negative in CDW states. In the
CDW states we discuss below electron density n is trans-
ferred between A and B honeycomb sublattices. In this state
the direct-interaction energy per site is

EDI =
�n�2

2 
U + �
j�A

V�dij� − �
j�B

V�dij�� , �1�

where dij is the distance between lattice sites i and j, U
=V�dii� and i is a fixed label belonging to sublattice A. The
largest terms in Eq. �1� are the repulsive on-site interactions
which are proportional in our model to U and attractive ex-
citonic interaction between electrons on neighboring oppo-
site sublattice sites which are inversely proportional to �r.
Using an Ewald technique to sum over distant sites we find
that EDI is positive for �rU�13.05 eV . �The correspond-
ing criterion for the truncated Coulomb interactions we use
in our self-consitent-field calculations is �rU� =12.23 eV;
the difference between the right-hand side of these two equa-
tions is one indicator of the inaccuracy introduced by trun-
cating the Coulomb interaction.� When �rU�12.23 eV the
CDW state is stable unless band and exchange energies sup-
port a uniform-density state.37

Given the band-structure model and the interaction model,
the Hartree-Fock mean-field-theory calculations for bulk
graphene sheets with periodic boundary conditions and for
graphene ribbons reported in the following sections are com-
pletely standard.42 The band quasiparticles are determined by
diagonalizing a single-particle Hamiltonian which includes
direct- and exchange-interaction terms. The direct and ex-
change potentials are expressed in terms of the occupied qua-
siparticle states and must be determined self-consistently.
�We do not quote the detailed expressions for these terms
here.� Since the Hartree-Fock equations can be derived by
minimizing the total energy for single Slater-determinant
wave functions, every solution we find corresponds to an
extremum of energy. The iteration procedure is stable only if
the extremum is a minimum so we can be certain that all the
solutions found below represent local energy minima among
single Slater-determinant wave functions with the same sym-
metry properties.

III. FIELD-INDUCED INSULATING GROUND STATES

A. Identification of candidate states

At zero-field band energy favors neutral graphene states
without broken symmetries and there is no compelling evi-
dence from experiment that they are induced by interactions.
In a perpendicular magnetic field, however, the systems is

particularly susceptible to the formation of broken-symmetry
ground states because of the presence of a half-filled set of
fourfold spin �neglecting Zeeman� and valley degenerate
Landau levels with �essentially� perfectly quenched band en-
ergy. Although the final ground-state selection probably rests
on considerations that it fails to capture, the n=0 continuum
model captures the largest part of the interaction energy and
most of the qualitative physics. The ground state is formed
by occupying two of the four n=0 Landau levels, selected at
random from the four-dimensional orbital space, and produc-
ing a gap for charged excitations.

Three representative broken-symmetry states are illus-
trated in Fig. 1. Because n=0 Landau-level orbitals associ-
ated with different valleys are completely localized on dif-
ferent honeycomb sublattices, a CDW solution results when
n=0 orbitals are occupied for both spins of one valley.
�When Landau-level mixing is neglected valley indices and
A or B sublattice indices are equivalent.� This state lowers
the translational symmetry of the honeycomb lattice in a way
which removes inversion symmetry. The other extreme is a
spontaneously spin-polarized uniform-density state
�ferromagnetic—F� in which n=0 orbitals are occupied in
both valleys but only for one spin component. A third type of
broken-symmetry state, the spin-density-wave �SDW� state,
has both broken inversion symmetry and broken spin-
rotational invariance. In the cartoon version of Fig. 1, n=0
electrons occupy states with one spin orientation on one sub-
lattice and the opposite spin orientation on the other sublat-
tice. Possible broken-symmetry states, some at other filling
factors, had been discussed previously by several authors.7,10

These three states are all contained within the n=0
continuum-model family of ground states whose degeneracy
is lifted by lattice and Landau-level mixing effects. In the
self-consistent mean-field-theory calculations described in
detail below, the three states identified above all appear as
energy extrema in our collinear-spin study.

B. Energy comparisons

In order to examine the physics behind the competition
between the candidate ground states we decompose the total
energy for all three contributions into band, direct-
interaction, and exchange-interaction contributions. We have
obtained self-consistent solutions for all three states over a
range of on-site interaction U and the dielectric screening �r
values. Because of kinetic-energy quenching in the �essen-
tially degenerate� n=0 Landau level, the interaction strengths
required to drive the system into an ordered state are essen-
tially zero. The key question, then, is which state is favored.
In Fig. 1 we illustrate how the energy differences between
the three states depend on the model interaction parameters.
The results in this figure were obtained for q=100 unit cells
per flux quantum, which corresponds to perpendicular field
strength B=792 T. The unit cells in which we can apply
periodic boundary conditions in this case contain 100�2
lattice sites. The k-space integrations in the self-consistent
Hartree-Fock calculations were performed using a 60 k-point
Brillouin-zone sampling. The self-consistent field equations
were iterated until the total energies were converged to nine
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significant figures. High accuracy is required because the
three states are very similar in energy since the ordering
occurs primarily in the n=0 Landau level, involving only 1%
or so of the electrons for this value of q. This accuracy was
sufficient to evaluate energy differences that typically have
three significant figures.

The first point to notice in these plots of energy differ-
ences is that the two uniform charge-density solutions, the F
solution and the SDW solution, behave similarly. The largest
contrast therefore is between the CDW solution and the
SDW and F solutions. Focusing first on the CDW/SDW
comparison we notice that the SDW state is favored when U
is large or �r is large. The crossover occurs near �rU
	12 eV, very close to the line along which EDI changes
sign. The fact that the CDW/SDW phase boundary occurs
very close to this line is expected because of kinetic-energy
quenching in a magnetic field. When the nonuniform-density
CDW state is compared with the uniform-density spin-
polarized F state the phase boundary moves very close to a
larger value of this product with �rU ranging from 	14 to
	18 eV along the phase boundary. Evidently the competi-
tion between CDW and SDW states is based very closely on
the direct-interaction energy, with additional weaker ele-
ments of the competition entering when the F state is con-
sidered.

Direct comparison between the uniform-density SDW and
F solutions indicates that the latter is favored only at values

of U and �r which are outside the range of most-likely val-
ues. As discussed in more detail below, we find that the
direct-interaction energy in these two states is identical, and
that the more negative exchange energy of the SDW state
overcomes a larger band energy. In this case the main differ-
ence between the energies of the two states arises from
Landau-level mixing effects. As we explain later, Landau-
level mixing leads to a local spin polarization which is larger
in the SDW state than in the F state.

In Fig. 1 we have introduced the main trends in the ener-
getic competition between CDW, SDW, and F states. How-
ever, as we have explained, these calculations were under-
taken at field strengths that exceed those available
experimentally. In the following section we demonstrate that
the field dependence of the energy comparisons is extremely
systematic so that extrapolations down to physical field
strengths are reliable. So far we have also ignored Zeeman
coupling which favors F states. This coupling can be impor-
tant and is also addressed in the following subsection.

C. Field strength and Zeeman-coupling dependence

We now turn our attention to the magnetic-field depen-
dence of the solutions. For this purpose we found self-
consistent solutions over a range of magnetic fields for two
sets of interaction parameters, U=5 eV and �r=4 for which
the SDW solution has the lowest energy, and U=5 eV and
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FIG. 1. �Color online� Upper panel: Schematic representation of valley polarized CDW, SDW and F spin-polarized broken-symmetry
solutions that can be obtained in a self-consistent mean-field calculation of graphene under a perpendicular magnetic field at half filling. Each
arrow represents the filling of one n=0 Landau level of a given spin and valley. Lower panel: From left to right ECDW−ESDW, ECDW−EF,
and ESDW−EF total-energy differences per electron in eV as a function of the on-site repulsion U and �r obtained from a data mesh of 9
�10 points, calculated neglecting the Zeeman term and for a magnetic field of 792 T corresponding to 1/100 of a flux quantum per
honeycomb hexagon. For smaller values of U the CDW solutions are energetically favored whereas for larger values of U the SDW solutions
are favored in a wide range of �r. The F solutions are never the lowest in energy. The zero energy red contour lines indicate degeneracy
between two different solutions.
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�r=2 for which the CDW solution has the lowest energy. The
band structures of the different possible solutions for these
set of parameters are shown in Fig. 2 and the field depen-
dences of the three energy differences are plotted in Fig. 3.
We see that every contribution accurately follows a B3/2

� lB
−3 law with small deviations that can be accounted for by

allowing a term proportional to B2. This is the same field-
dependence law that we discussed earlier for the case of a
noninteracting electron system. In the continuum model it is
guaranteed in neutral graphene when electrons interact via
the Coulomb interactions by the fact that both kinetic and
interaction energy densities then scale as �length�−3; the mag-
netic field simply provides a scale for measuring density. The
fact that we find this field dependence simply shows that the
condensation energies of all three ordered states are driven
by continuum-model physics. This is in agreement with the
intuitive picture of the interaction energy as the product of
the number of electrons occupying a Landau level which is
directly proportional to B, multiplied by the Coulomb-
interaction scale for electrons in the n=0 Landau level which
is proportional to B1/2. The fact that the differences in energy
between the three states follows this rule suggests that the
most important source of differences in energy between these
states is Landau-level mixing, which should not violate the
B3/2 law. Small deviations from this law are expected be-
cause of lattice effects. The deviations are stronger in CDW
solutions than in the SDW solutions because of the charge-
density inhomogeneity at the lattice scale present in the
former.

We can draw two important additional conclusions from
the B3/2 behavior. First of all, lattice effects are not dominant
effect at the field strengths for which we are able to perform
calculations, and should be less important at the weaker
fields for which experiments are performed because the mag-
netic length lB will then be even longer compared to the
honeycomb lattice constant. The difference in energy be-
tween the three states should mainly vary as B3/2 all the way
down to zero field, provided only that disorder is negligible.
�We discuss the role of disorder again in Sec. V.� Our calcu-
lations should therefore reliably predict the energetic order-

ing of the states in the experimental field range. The second
conclusion we can make concerns the importance of Zeeman
coupling which we have ignored to this point. First of all,

−∆Ekin

∆Etot

∆EX

U = 5 eV, εr = 4

lB/a

E
F
−

E
A

F
(m

eV
)

54

1

0.4

0.16

−∆Ekin

U = 5 eV, εr = 2

lB/a

E
F
−

E
C

D
W

(m
eV

)

54

2.5

1

0.4

∆Etot

∆EX

∆Ees

U = 5 eV, εr = 2

lB/a

E
F
−

E
C

D
W

(m
eV

)

54

2.5

1

0.4

(b)(a)

FIG. 3. �Color online� Total energy per site differences �Etot,
separated into kinetic energy �Ekin, electrostatic energy �EDI, and
exchange energy �EXI contributions as a function of magnetic
length �B in lattice constant a=2.46 Å units. The total-energy dif-
ferences were fitted to a C3/2B3/2+C2B2 curve. The fitting param-
eters are listed in Table I. Left panel: Energy differences between F
and SDW solutions �EF/SDW=EF−ESDW. These results were ob-
tained with interaction parameter values U=5 eV and �r=4 for
which SDW is the lowest energy configuration. The more negative
values of exchange energy in the SDW state compensates the
kinetic-energy penalty related to the inhomogeneous accumulation
of the electron wave functions at alternating lattice sites. The elec-
trostatic energy differences are zero thanks to the uniform electron
density for both solutions. Right panel: Same as the previous figure
but for �EF/CDW=EF−ECDW. The interaction parameters in this
case are U=5 eV and �r=2 for which CDW is the lowest-energy
configuration. When the on-site repulsion U is small enough that
the electrostatic energy penalty for the inhomogeneous charge dis-
tribution is small, exchange is the main contribution driving the
CDW instability. However, in the case illustrated here U is so small
that the electrostatic part of the Hamiltonian does play an important
role in favoring the CDW state. The energy contributions follow a
magnetic-field decay law that deviates more from B3/2 than in the
previous case because the on-site interaction U plays an essential
role.
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FIG. 2. �Color online� One-dimensional representation of the dispersionless band structure of a graphene sheet under a strong magnetic
field B=440 T represented in the momentum coordinate k parallel to the narrower direction of the unit cell. The band gaps follow the B1/2

scaling law expected from the continuum model. The red color is used to represent up spin while blue is used for down spin. Left Panel:
Band structure for CDW, SDW, and F solutions obtained for U=5 eV and �r=4. For these interaction parameters the SDW state has the
lowest energy and the largest gap at the Fermi level. Right Panel: Band structures for U=5 eV and �r=2. When the on-site repulsion is
sufficiently weak the energetically favored solution corresponds to the CDW state and this solution then has the largest gap.
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Zeeman coupling will have a negligible effect on the ener-
gies of the SDW and CDW states since they have a vanishing
spin magnetic susceptibility. The energy difference per site
between the F state and the two density-wave states can be
written in the form

�E = E�SDW/CDW� − EF

= B3/2C3/2
�SDW/CDW� cos���3/2

+ B2�C2
�SDW/CDW� cos���2 − CZ cos���� �2�

where B is the total magnetic-field strength and � is the field
tilt angle relative to the graphene plane normal. Factors of
B cos��� in this expression therefore account for the perpen-
dicular field dependence. The second term in Eq. �2� contain
the contributions that scale with B2. The factor of B cos���
which appears in the Zeeman term is present because the
spin polarization of the F state is proportional to the Landau-
level degeneracy. The coefficients C3/2 and C2 can be ob-
tained by fitting energy differences obtained from numerical
solutions of the self-consistent field equations, like those
plotted in Fig. 3, and depend on the interaction model pa-
rameters as shown in Table I. The Zeeman coefficient in Eq.
�2� is CZ=7.3�10−10 eV /T2 is independent of interaction
parameters. From the above equation we find that the F state
has lower energy than the spin-unpolarized states for

B � Bc��� =
C3/2

2 cos���
�Cz − C2 cos����2 . �3�

The fields required to achieve an energetic preference for the
spin-polarized state are smaller at larger tilt angles because
the orbital energy has a stronger � dependence, Fig. 4.

In Table I we show the values of C3/2 and C2 for SDW
and CDW configurations favored with respect to F for a set
of parameters of U and �r. We notice that the coefficients
dictating the critical-field transition to F solutions can be
made relatively small if the parameters are near the crossover
boundary to F states. It is possible that a SDW or CDW to F
transition could be induced by varying magnetic field. If a
transition was observed, most likely by a change in transport
properties as discussed in the next section, it could provide
valuable input on the effective interaction parameters of the
�-orbital tight-binding model.

IV. QUANTUM-HALL EDGE STATES IN GRAPHENE
RIBBONS

The quantum-Hall effect occurs when a two-dimensional
�2D� electron system has a chemical-potential discontinuity

TABLE I. In the upper table we list the values of C3/2
�SDW/CDW� in units of 10−10 eV /T3/2 and C2

�SDW/CDW� in units of 10−10 eV /T2,
obtained from fits to the their energy difference with respect to F states as given in Eq. �2� for two different values of the interaction
parameters U and �r. The critical field Bc estimates are dependent on the reliability of these fits. Note that a crossover between SDW and
CDW states can be driven by changes in the dielectric screening environment captured by �r. The lower table lists Bc values at which the
F states become critical according to Eq. �3�.

�r=2 �r=3 �r=4

U C3/2
CDW C2

CDW C3/2
CDW C2

CDW C3/2
SDW C2

SDW C3/2
CDW C2

CDW C3/2
SDW C2

SDW

2 NA NA 322 −1.89 52.6 1.05

3 NA NA 130 0 23.2 0.0314

4 1070 −13.6 54.2 −0.210 51.6 0.0209

5 417 −3.15 111 −0.630 92.8 0.839

6 198 −1.67 255 −2.10 241 0

U BC
CDW BC

CDW BC
SDW BC

CDW BC
SDW

2 NA 1200 70

3 NA 300 10

4 2600 52 50

5 1600 200 200

6 490 740 1100

U = 5eV, εr = 2

U = 5eV, εr = 4

θ

B
c
(θ

)
(T

es
la

)

2000

1000

0
π/2π/3π/60

200

100

0

FIG. 4. �Color online� Tilt-angle � dependence of the critical
magnetic field required to induce a transition to the F state. The
black solid curve and dashed blue curve represent the critical mag-
netic fields starting from the SDW and CDW states, respectively. In
the CDW curve we observe a larger deviation from a simple cos���
law due to a stronger influence of lattice scale physics described by
the C2 coefficient in Eq. �3�.
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�a gap for charged excitations� at a density which depends on
magnetic field. A gap at a field-dependent density
necessarily43,44 implies the presence of chiral edge states that
support an equilibrium circulating current. The current varies
with chemical potential at a rate defined by the field depen-
dence of the bulk gap density. Most quantum-Hall measure-
ments simply reflect the property44 that separate local equi-
libria are established at opposite edges of a ribbon in systems
with a bulk energy gap or mobility gap. It is immediately
clear therefore that the �=0 quantum-Hall effect is special
since it is due to an energy gap at the neutrality point, i.e., at
a density which does not depend on magnetic field. The issue
of whether or not the �=0 gap and associated phenomena
should be referred to as an instance of the quantum-Hall
effect is perhaps a delicate one. The �=0 gap is intimately
related to Landau quantization and in this sense is comfort-
ably grouped with quantum-Hall phenomena. This view sup-
ports the language we use in referring to the �=0 quantum-
Hall effect. On the other hand, since it occurs at a field-
independent density, its transport phenomena are more
naturally viewed as those of an ordinary insulator16 which
just happens to be induced by an external magnetic field.

An exception occurs for the F state which does have edge
states,8,18 and can be viewed as having �=1 for majority
spins and �=−1 for minority spins. In the simplest case, it
has two branches of edge state with opposite chirality for
opposite spin, much like those of quantum-spin-Hall17 sys-
tems. In a Hall-bar geometry most transport measurements
are very strongly sensitive to the presence or absence of edge
states. In order to address edge-state physics directly at �
=0 we have extended our study from the bulk graphene to
the graphene nanoribbon case, Fig. 5. Tight-binding model
solutions for a ribbon in the presence of a magnetic field can
be obtained in essentially the same way as for bulk graphene,
with the simplification that any magnetic-field strength pre-
serves the one-dimensional ribbon wave vector k as a good
quantum number when the gauge is chosen appropriately.
This graphene ribbon problem in a magnetic field was stud-
ied time ago by Wakabayashi et al.45 and revisited recently
within both tight-binding31,46 and continuum8,47,48 models in
order to provide a microscopic assessment of the relationship
between Landau levels and edge states. The general feature
of the ribbon band structure in the presence of a magnetic
field is that those states localized near the edges have disper-
sive bands whereas those in the flat-band region are located

mostly in the bulk. In the case of zigzag edge termination,
edge localized states are present even in the absence of a
magnetic field.49 In the quantum-Hall regime these states are
in the nondispersive band region such as the bulk localized
states and they do not contribute to edge currents, although
they can interact with other edge localized states.

Figure 6 explicitly illustrates how the character of the
bulk broken symmetry is manifested in ribbon edge-state
properties. Because of practical limitations our calculations
are restricted to moderately narrow ribbons with widths of
order 10 nm. In order to properly reproduce bulk Landau-
level quantization in these narrow systems we have to choose
magnetic-field strengths strong enough to yield magnetic
lengths �B	25 nm / �B�T��1/2 substantially smaller than the
ribbon width, i.e., fields stronger than typical experimental
fields. On the other hand if the magnetic fields are too strong,
say �B�a the levels will be strongly affected by the lattice
and the properties of the solutions will substantially depart
from the behavior we should expect at weaker magnetic
fields, for which the continuum-model description is ap-
proximately correct. For field strengths in the appropriate
range, we find the same three types of self-consistent field
solutions as in the bulk calculations, namely, F, CDW, and
SDW solutions. The band structures and spin-resolved den-
sities presented in Fig. 6 confirm that only the F solution has
states in the broken-symmetry-induced gap. Hall-bar trans-
port properties for the F configuration have been discussed
by Abanin et al.8 and Fertig et al.18 from a theoretical point
of view. The CDW and SDW state electronic structure is
insulating, both at the edge and in the bulk. The band struc-
tures of these two states are similar even though their spin-
density profiles are quite distinct.

The plots of spin-↑ and spin-↓ partial densities across the
ribbons hint at some of the physics which selects between
the three candidate ordered states. In the truncated n=0
Landau-level continuum theory, the F state has one excess
occupied Landau level for majority spins and one Landau
level occupation deficiency for minority spins. We see in Fig.
6, that the size of these polarizations is not strongly influ-
enced by the Landau-level mixing effects included in our
lattice calculation. The n=0 continuum theory SDW state
has the same spin excesses and deficiencies but they have
opposite sign on opposite sublattices. We see in Fig. 6, that
these order parameters are actually enhanced by Landau-
level mixing effects; inter-Landau-level exchange effects po-
larize lower-energy occupied Landau-level states so that they
enhance the SDW pattern. For the CDW state on the other
hand, the n=0 Landau-level excess density on one sublattice
is suppressed by Landau-level mixing. In this case the direct
electrostatic interaction is nonzero so that the occupied Lan-
dau levels away from the Fermi energy are polarized be-
tween sublattices in the opposite sense of the n=0 levels.
The fact that the SDW state is enhanced by Landau-level
mixing explains why it is favored over the F state for the
interaction parameters used to construct Fig. 6.

Finally, we comment on the microscopic electronic struc-
ture at the edges of an F state. As illustrated in Fig. 6, the
mean-field electronic structure at the edge contains a domain
wall.18 Because textures in this domain wall can18 carry
charge, the F state edge is however not necessarily insulating

Zigzag ribbon unit cell

A
rm
ch
ai
r
ri
b
b
o
n
u
n
it
ce
ll

a= 2.46Å
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FIG. 5. �Color online� Representation of the unit-cell choices for
armchair and zigzag edge-terminated graphene nanoribbons.
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in the absence of disorder. It was recently argued that impu-
rities with magnetic moments near the sample edges can in-
troduce spin-flip backscattering potentials18 whose effective-
ness is enhanced by the presence of a domain wall. The high
resistances seen experimentally at �=0 therefore do not nec-
essarily prove that the ground state is not an F state. The
analysis in Ref. 18 was carried out within a Luttinger-liquid
formalism whose parameters depend on the domain-wall
shape. As illustrated in Fig. 7, our microscopic domain walls
exhibit an interesting anisotropy in which inner and outer
segments of the wall differ.

V. SUMMARY AND DISCUSSIONS

We have carried out a mean-field study of graphene’s �
=0 ground state which aims to shed light on the character of
the interaction-induced gap that appears experimentally. The
fact that the ground state has a charge gap at this filling
factor can be established essentially rigorously12 within the
continuum model often used to describe graphene. When
interaction-induced mixing between n=0 and �n��0 Landau
levels is neglected in the continuum model, the family of
broken-symmetry states is related by arbitrary spin and val-
ley pseudospin rotations and includes both fully spin-
polarized F and spin �SDW� and charge �CDW� wave states.
Our effort to determine the ground-state character when
Landau-level mixing and lattice effects are included, is mo-
tivated by the observation of magnetic-field-induced insulat-
ing transport properties and by the expectation that transport

properties in the quantum-Hall regime should be very differ-
ent for F, SDW, and CDW states.

The lattice model we study has two phenomenological
parameters, a relative dielectric constant �r and an on-site
interaction parameter U. The most appropriate values of both
parameters are somewhat uncertain. Our two main findings
are that �i� Landau-level mixing effects favor the density-
wave states over the ferromagnetic state and �ii� the compe-
tition between CDW and SDW states is sensitive to the rela-
tive strength of on-site and intersite electron-electron
interactions and hence on the product �rU. Large values of
this product increase the direct mean-field energy cost of
CDW order and favor the SDW state. Exchange energies are
stronger for density-wave states than for ferromagnetic states
because order within the n=0 level, induces order in the full
negative n Landau levels in the former case but not in the
latter case. For graphene on SiO2 and other typical sub-
strates, sensible values for �r and U suggest that the field-
induced state at n=0 is a SDW state. CDW states could
occur in suspended graphene samples.

The atomic value of the on-site interaction term in carbon
is U	10 eV so graphene values should be smaller. Most of
the illustrative calculations we have described use either U
=4 eV or U=5 eV. The dielectric constant is �r	1 for free-
standing graphene. For a SiO2 substrate, with dielectric con-
stant �r	4.5, the effective 2D dielectric constant at a
substrate/vacuum interface is �r	2.5. Because the Hartree-
Fock approximation overestimates the strength of exchange
interactions, it can be argued that somewhat larger values of
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FIG. 6. �Color online� Band-structure and spin-density distributions in armchair ribbons calculated for U=4 eV and �r=4 for a magnetic
field corresponding to �B=4.24a �B=606 T� using a 100�2 lattices in the unit cell and 80 k-point sampling in the Brillouin zone. The red
color is used to represent up spin while blue is used for down spin. Upper row: Armchair ribbon band structures for the F, SDW, and CDW
solutions. Only the F solution is metallic while the other two configurations are insulating. For this choice of parameters SDW is the
energetically favored state but the energies of the other states are similar and their band gaps also have a similar size. Lower row: Spin-↑ and
spin-↓ density distributions across one of the zigzag rows in the unit cell of an armchair ribbon. The influence of Landau-level mixing on the
three solutions is apparent in the differences between the three sets of density distributions. In the case of SDW solutions Landau-level
mixing enhances the local spin density while in the case of the CDW solution the magnitude of the charge-density oscillation is reduced by
Landau-level mixing. The dashed horizontal lines represent the occupation in absence of Landau-level mixing.
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�r are appropriate—perhaps 	2 for free-standing graphene
and �r	4 or 5 for graphene on a substrate. Because of these
uncertainties we view U and �r as effective parameters
whose values are somewhat uncertain and have made energy
comparisons over a wide range of values.

We are able to complete our calculations only at
magnetic-field strengths much stronger than those available
experimentally. Partly to verify that the field dependence is
systematic, and partly in an effort to estimate the magnetic-
field strengths necessary for Zeeman energies to drive the
system into a F state, we have fit the energy differences
between F and density-wave states to the form �E
=C3/2B3/2+C2B2. Only the first term can be present for a
continuum model with Coulomb interactions, and we find
that this term is indeed dominant. We find that Zeeman cou-
pling at typical fields can change the nature of the state only
in the parameter range where the crossover from CDW to
SDW states occurs. Although we assume collinear states in
analyzing the SDW/F competition, we presume that the
SDW to F crossover is actually a continuous one in which
the antiparallel spins on opposite sublattices are smoothly
rotated until they are aligned. Even if the bulk gap remains
open the rotation of the spins will bring about a progressive
closing of edge-state band gaps, until the gap is completely
closed in the F configuration. The modulation of the edge

charge gap due to Pauli paramagnetism might be detected in
edge transport experiments. Since a relatively strong mag-
netic field is required to induce the insulating state in typical
samples, we do not expect that it will be easy to produce
parallel fields large enough to turn the system metallic while
maintaining this minimum perpendicular field. Nevertheless,
a study of the parallel-field dependence of transport proper-
ties is likely to hint at the nature of the underlying broken-
symmetry state of the system.

All of these results ignore the influence of disorder. Ex-
periments appear to show that the transition to the insulating
state occurs at magnetic fields above some critical value that
becomes smaller when the sample is cleaner. This is ex-
pected since disorder favors states without broken symme-
tries. The relationship between the minimum field and the
mobility was carefully examined some time ago6 but can be
crudely described using the following simple argument. As-
suming uncorrelated scatterers and using the Fermi golden
rule the mobility is ��1 /Vdis

2 , where Vdis is the typical en-
ergy scale of disorder. The crossover occurs when disorder
strength equals the interaction energy scale Vdis=Uint�B3/2,
therefore the critical magnetic field between samples with
different mobility are related through Bc� /Bc= �� /���1/3.
One physical picture of the strong disorder limit asserts
that current flows along domain walls which separate
disorder-induced electron-hole puddles16 domain walls along
which current-carrying states with ��0 can dominate
bulk transport and suppress the divergent resistivity. In
graphene on substrates the mobility values range between
2000 and 25 000 cm2 V−1 s−1, and values as high as
230 000 cm2 V−1 s−1 have been achieved in annealed sus-
pended samples.50 Typical critical fields in samples on sub-
strates are in the 20–30 T range. From the above argument
we can expect that the critical magnetic fields in suspended
samples should be roughly two to five times lower.

An important goal of our work was to shed light on the
character of the �=0 edge states. We examined the electronic
structure of armchair ribbons with CDW, SDW, and F states,
finding that edge states in the gap are absent for both CDW
and SDW solutions. Given that the field-induced insulating
state appears to have an extremely large resistance once es-
tablished, it appears likely to us that the experimental state
does not have edge states and that it therefore must be a
density wave, as suggested by these calculations. If so, a
study of the influence of magnetic-field tilting might be able
to distinguish between SDW and CDW states.
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FIG. 7. �Color online� Quantum-hall edge domain-wall wave
functions and energy bands corresponding to an F solution calcu-
lated for a zigzag graphene nanoribbon with 20 carbon atom pairs
in the unit cell �W=42.6 Å� under a magnetic field of B=5660 T.
Left panel: In the upper figure we represent the edge-state wave
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when hybridization is not included. The lower figure represents the
coefficients of the hybridized domain-wall state. All wave functions
are plotted at the Bloch wave vector indicated by arrows on the
right panel. Right panel: Quantum-hall edge-state bands with
collinear-spin states represented by black and red symbols and the
noncollinear-spin edge states formed by optimizing the hybridiza-
tion of up- and down-spin orbitals represented by the blue symbols.
We observe a clear single-particle energy gap related to the energy
gained by forming the noncollinear domain-wall structure.
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